Optimal Signal Reconstruction Using the Empirical Mode Decomposition
نویسندگان
چکیده
منابع مشابه
Optimal Signal Reconstruction Using the Empirical Mode Decomposition
The empirical mode decomposition (EMD) was recently proposed as a new time-frequency analysis tool for nonstationary and nonlinear signals. Although the EMD is able to find the intrinsic modes of a signal and is completely self-adaptive, it does not have any implication on reconstruction optimality. In some situations, when a specified optimality is desired for signal reconstruction, a more fle...
متن کاملPartial Discharge Signal Denoising Using the Empirical Mode Decomposition
This paper presents the findings of an investigation into Partial Discharge signal denoising using techniques based on Empirical Mode Decomposition. The denoising techniques are based on thresholding the Intrinsic Mode Functions which result from the Empirical Mode Decomposition of a signal. The results of the tests carried out show clearly that these techniques can produce excellent results wh...
متن کاملSignal Detection in Underwater Sound Using the Empirical Mode Decomposition
In this article, the empirical mode decomposition (EMD) is introduced to the problem of signal detection in underwater sound. EMD is a new method pioneered by Huang et al. for non-linear and nonstationary signal analysis. Based on the EMD, any input data can be decomposed into a small number of intrinsic mode functions (IMFs) which can serve as the basis of non-stationary data for they are comp...
متن کاملSignal Denoising Using Empirical Mode Decomposition and Higher Order Statistics
A hybrid denoising method is presented as a combination of Empirical Mode Decomposition (EMD) and Higher Order Statistics (HOS). EMD, an adaptive data-driven method, is used for effective decomposition of a noisy signal into its functional components. Then Kurtosis and Bispectrum operate as Gaussianity estimators, supplemented by Bootstrap techniques, ensuring detection and removal of the signa...
متن کاملEmpirical Mode Decomposition for Eeg Signal Analysis
Electroencephalogram (EEG) is used to record electrical activity of brain. Human brain is fascinated by the different idea of thoughts and feelings generated from external and internal stimuli. Feature extraction and classification of EEG signal plays an important role in diagnosis of various brain diseases and mental tasks. In this paper, powerful technique of empirical mode decomposition (EMD...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: EURASIP Journal on Advances in Signal Processing
سال: 2008
ISSN: 1687-6180
DOI: 10.1155/2008/845294